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In the scientific papers are presented various models for the optical system of the human eye, considered ideal, known by 
the term of emmetropic eye. Little information can be found regarding the extra-paraxial aberrations of the human eye, like: 
Spot diagram, transversal aberrations, distribution of light in the image point, aberration of the wavefront and modulation 
transfer function. This paper presents a synthesis of the most important optical aberrations of the human eye, more 
precisely the aberration of the wavefront and modulation transfer function (MTF) and a method for the calculation of the 
refractive index of the crystalline lens, which will lead to ideal aberrations. The mathematical model selected is based on the 
spherical diopters hypothesis and is limited by diffraction.  
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1. Introduction 
 

In the scientific papers are presented various 

mathematical models of the optical system of the 

emmetropic eye (Lotmar, Gullstrand, LeGrand, etc.). 

 Little information can be found regarding the extra-

paraxial aberrations, like: Spot diagram, transversal 

aberrations, distribution of light in the image point, 

aberration of the wavefront and modulation transfer 

function.  

This paper presents an evaluation of the wavefront 

aberration and modulation transfer function (MTF) for a 

selected model of the human eye. The use of the 

calculation formulas for these aberrations leads to very 

high values as compared to the reality. This was to be 

expected, considering that the refractive index is constant 

within the mass of the lens. In reality, we know that the 

refractive index of the lens is variable throughout its mass 

by a law, which unfortunately, is not known.  

The paper presents a method for calculating the 

refractive index of the lens, which will lead to ideal 

aberrations, meaning the wavefront aberration with values 

very close to zero and the MTF overlapped on the ideal 

curve.  

By knowing the manner in which the refractive index 

of the lens changes, the selected human eye achieves 

paraxial and extra-axial harmony. The paraxial and extra-

axial harmony allows the mathematical simulation of the 

subjective evaluation, the correction using eyeglass lenses 

or contact lenses.  

 The mathematical model selected is based on the 

spherical diopters hypothesis, hypothesis accepted for all 

ideal models.  It has geometrical aberrations equal to zero 

and the resolution limited by the diffraction phenomenon. 

Based on this statement we can say that the variation 

pattern for the refractive index of the lens creates an 

optical system at the diffraction limit. In order to process 

the data and achieve their graphical representation was 

employed an optical calculation software, designed by the 

authors based on the optical calculation formulas, in an 

extension of the Pascal software, named Delphi 2006.   

 

 

2. Presenting the mathematical model  
    selected for the human eye [1-5]  
 

In order to create a mathematical model of the human 

eyeball, the information collected from the scientific 

papers must be processed in a uniform manner, to obtain 

the calculation formulas, just like in the technical optics. 

From the analysis conducted on various models of the 

human eye, studied from the scientific papers, were 

obtained the dimensional limits for the ocular 

environments.       

  In table 1 are summarized the statistical data for 

enclosing of the human eye parameters, and in table 2 are 

presented the values of the refractive indexes for the 

components of the human eye, excerpted from the work 

[1].  
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Table 1. Statistical enclosing of the parameters of the optical system of the human eye. 

 

Name  Interval 

1.    Cornea thickness  0.40 . .  0.60 mm 

2.    Cornea anterior radius    7.00 . .  8.65 mm 

3.    Cornea posterior radius  6.20 . .  6.80 mm 

4.    Anterior chamber depth  2.80 . .  4.60 mm 

5.    Lens anterior radius  8.80 . .  11.90 mm 

6.    Lens posterior radius -5.60 . .  - 6.00 mm 

7.    Lens thickness  3.60 . .  4.50 mm 

8.    Lens power  15.00 . .  27.00 dpt 

9.    Axial length  20.00 . .  29.5 mm 

10.   Ocular power  54.00 . .  65.00 dpt 

11.   Eyeball radius  11.00 . .  12.50 mm 

12.   Rotation center for the eyeball  12.80 . .  13.50 mm 

13.   Iris diameter  2.00 . .  8.00 mm 

14.   Iris abscissa  2.10 . .  2.25 mm 

               

 
Table 2. Refractive indexes for the base radiations for optical components of the eyeball. 

 

  nC 

λ=656.2725 nm 

nD 

λ=589.2937 nm 

nF 

λ=468.1327 nm 

ng 

λ=435.8343 nm 

νD 

λ=587.2937 nm 

 

1 Cornea 1.3751 1.3771 1.3818 1.3857 56.2835 

2 Aqueous humor 1.3354 1.3374 1.3418 1.3454 52.7187 

3 Lens 1.4175 1.4200 1.4254 1.4307 53.4645 

4 Vitreous humor 1.3341 1.3360 1.3404 1.3440 53.333 

      

 

 

     By studying the various models of the human eye, 

the Lotmar model was determined to be the most 

convenient for the proposed demonstrations. The 

construction of the selected ocular model, with 

information for dimensioning and the characterization of 

its environments, is presented in Fig. 1.  For the 

calculation of the aberrations of the human eye must be 

determined the refractive indexes for at least 4 

wavelengths. The refractive index will be obtained for any 

wavelength by using the interpolation polynomial given by 

the Laurent series:
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The current version used for the visible domain 

considers k = 1 and L = 4, resulting: 
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The determination of the unknown variables, meaning 

the coefficients from formula (2), will be made by using 

the method of the least squares.  The formulas were 

obtained by assuming that the rate of the curve of the 

refractive index by the wavelength of the components of 

the optical system of the eyeball is similar to the one for 

the optical glasses. With the aid of the proposed optical 

calculation software is obtained the graph of the values of 

the refractive index from Fig. 2.  

       In the same manner will be processed the values for 

the other components of the human eye, the data obtained 

being presented in Table 3.                                                            

          In order to obtain accurate values, the values of the 

coefficients are used with the maximum number of 

decimals. Due to technical considerations the results are 

presented with just 4 decimals.    In table 3 are presented 

the coefficients of the interpolation polynomials for the 

determination of the variation graphs for the refractive 

indexes for all ocular environments.                                                                                                            
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Fig. 1. Mathematical model selected for the human eye 

 

        

 
Fig. 2. Determination of the coefficients of the interpolation polynomial for the human eye lens 

       
Table 3. Coefficients of the interpolation polynomial for the refractive indexes for the environments of the eyeball 

 

 Cornea Aqueous humor Lens Vitreous 

humor 

A0 1.8755 E+00 1.7636 E+00 1.9690 E+00 1.7694 E+00 

A1 -4.9532 E-03 -4.2019 E-03 -1.0366 E-02 -2.9923 E-03 

A2 3.9953 E-03 7.7294 E-03 2.9415 E-02 -2.5009 E-03 

A3 2.6310 E-03 1.5954 E-03 -5.5541 E-03 5.4257 E-03 

A4 -5.9387 E-04 -5.2328 E-04 4.8596 E-04 -1.1432 E-03 

A5 4.9787 E-05 5.0380 E-05 1.0430 E-05 8.7305 E-05 
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When we remove the selected model from the natural 

emmetropia state, due to the variation within the body of 

the refractive index of the lens, it becomes ametropic, the 

correction involves the positioning in front of the eye of a 

corrective lens.  In order to apply the design methods for 

the optical systems must also be known the coefficients of 

the interpolation polynomial for the material composing 

the corrective lens. The material selected for the corrective 

lens is presented in table 4.  

                                                                                                                          
 

Table 4. Refractive indexes for the material composing the contact lens. 

 

 

Material 

nF 

λ=468.1327 nm 
nD 

λ=589.293 nm 
nC 

λ=656.272 nm 

νD 

λ=587.2937 nm 

Methyl methacrylate styrene copolymer (NAS) 1.574 1.563 1.558 33.5 

 

 

       With the aid of the calculation software are obtained 

the coefficients of the interpolation polynomial for the 

refractive index for the material that could be used for 

manufacturing the corrective lens. They are presented in 

the Table 5.  

The graph of the interpolation polynomial resulted for 

the selected material is presented in Fig. 3. 

 

 

 

 

 

 
Table 5.  Coefficients of the interpolation polynomial for 

the refractive index for the materials that could be used  

   for manufacturing the contact lens. 

 NAS 

A0 2.3365 E+00 

A1 1.5363 E-02 

A2 6.5108 E-02 

A3 1.3964 E-02 

A4 1.9054 E-03 

A5 7.8811 E-05 

    

 

 
 

Fig. 3.  Curve of the coefficients of the interpolation polynomial for the material Methyl methacrylate styrene copolymer 

 

 

3. Aberrations of the optical system of the  
    eyeball [2-7]  
 

In order to calculate the extra-paraxial aberrations, is 

constructed a beam of optical rays leaving from the object 

point, having a uniform distribution on the surface of the 

entry pupil.  For the passing of the rays through the optical 

system are employed the complex formulas of 3D tracing. 

With the aid of the constructed beam of optical rays, can 

be conducted the analysis of a set of aberrations, like: Spot 

diagram, transversal aberration, distribution of light in the 

image point, aberration of the wavefront and modulation 

transfer function.  

 

3.1.  Wavefront aberration 

 

The wavefront aberration represents the most 

important information that can describe the state of 

correction for an optical subassembly.  By definition the 

wavefront aberration is given by formula 3. 
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       In this formula jD  represents the basic geometric 

pathway of the main pupil radius; 
jD  represents the basic 

optical pathway of a given radius, and 
jn  represents the 

refractive index of the environments traversed by the 

optical rays.   

      We approximate the wavefront aberration with the aid 

of the Malacara polynomial presented in formula 4. [6]: 
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In this formula ijC  represent the coefficients of the 

interpolation polynomial; x and y represent the coordinates 

of the intersection point of the optical ray, considered by 

us, with the reference sphere of the investigated optical 

system, and Op represents the order of the polynomial.  

The determination of the coefficients for these 

polynomials is made using the following method. 

We assume a uniform distribution, with M points, in 

the entry pupil.  For each point from this distribution, we 

calculate the N components (
jijyx 
) of the interpolation 

polynomial, which are written as 
ija .  Next we determine 

the values of the unknown terms Cij, written with 

Njx j ..1,  , so that, the difference between the value 

of the wavefront aberration calculated with the 

interpolation polynomial and the value calculated with the 

exact formula, written with M..1ibi  , will represent a 

minimum regardless of the point from the entry pupil for 

which the investigation is performed.  For this is defined 

the difference:    
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       The values xi that minimize this function are the 

solutions of the system obtained by canceling the partial 

derivatives of the function  from the formula 6. By 

applying the difference is obtained the expression 7. 
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    We equate with zero each partial derivative and we 

obtain the linear system of N equations with N unknowns, 

from which are obtained the coefficients of the 

interpolation polynomial. 
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       The illustration of the formula 3, apparently simple, 

will be made for the selected mathematical model (see 

figure 1), when assuming that the refractive index of the 

lens is constant within its body.  The wavefront aberrations 

for the optical system of the eyeball in the meridian plane 

and in the sagittal plane are presented in figure 4.   

       For a greater accuracy of the interpolation polynomial 

were employed 120 optical rays with uniform distribution 

in the entry pupil, and the order of the interpolation 

polynomial is Op = 10.   
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Fig. 4. The wavefront aberration for the optical system of the eyeball when the refractive index  

of the lens is constant throughout its body.   

 

 

3.2. Modulation transfer function [6][7] 

 

The wavefront aberration is also employed for the 

construction of the single link that can be presented in 

optics between the resolution and the contrast of an image 

of an optical system, meaning the optical transfer function 

(OTF). No single theory was established for the 

calculation of the optical transfer function.  In most 

scientific specialty papers is employed the Hopkins 

method, which gives the formula for the module of the 

optical transfer function, the so called modulation transfer 

function (MTF), in the sagittal plane (formula 9): 
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and in the meridian plane (formula 10): 
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where: A =  area of the exit pupil for the optical 

system. 

 s =  reduced spatial frequency 


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 ; 

 f  =  real spatial frequency; 

 S      = common area of the intersection 

between two exit pupils with axially symmetrical 

displacement with s/2; 

 k =  wave number 











2
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 W = wavefront aberration; 

D(s)  =  modulation transfer function for the reduced 

spatial frequency.  

The calculation method for these expressions is 

apparently simple, but it becomes complicated when it is 

closely examined.   

Many of the problems with the calculation of the OTF 

regard the practical difficulties when evaluating the 

equation (9) and respectively (10), due to the complexity 

of obtaining the wavefront aberration.   

The program used to calculate the optical transfer 

function has three phases: 

1. Evaluation of the shape of the exit pupil, because 

in almost all cases it is affected by vignetting and directly 

influences the integration area.  The integration area was 

approximated with an ellipsis.  

2. The calculation of the polynomial of the 

wavefront aberration involved the use of a polynomial for 

the approximation of the wavefront aberration.   

3. Calculation of the integral  

 

  3.3 Next is presented the calculation method for  

       the modulation transfer function.  

 

Many of the problems with the calculation of the OTF 

regard the practical difficulties when evaluating the 

equation (9) and respectively (10). 

In this paper for the integration is employed the 

method of Gaussian quadrature, which is often used, due 

to the relatively small number of points required for the 

calculation.   

Basically the method transforms the integral 
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The result can be written as   
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where  k  and kw  are the  coordinates respectively the 

weights of the integration method.  

       For example, for n = 6, the abscissas respectively the 

weights are presented in table 6.  

       A method of employing the Gaussian quadrature for 

the evaluation of the integrals (9) and (10) consists in the 

separation of the integral by x, from the integral by y.     

Thus if we write: 
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the integral (9) is calculated with the formula: 

 

     dyyg
A

sD
1

         (13) 

 

 

       Of course, in the same manner is obtained: 
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and the integral (10) is calculated with the formula: 
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Table 6. Coordinates respectively weights of the 

integration method employing the Gaussian quadrature 

 

   w 

1 -0.9324 0.1713 

2 -0.6612 0.3607 

3 -0.2386 0.4679 

4 0.2386 0.4679 

5 0.6612 0.3607 

6 0.9324 0.1713 

 

The exemplification of the formulas 9 and 10, for the 

four radiations employed, is presented in Fig. 5.  

 

 

 
 

Fig. 5. Modulation transfer function (MTF) for the optical system of the eyeball when the refractive index  

of the lens is constant throughout its body.   

 

 

      4. Determination of the formula for the  
    variation of the refractive index of the lens  [2] 
 
In the scientific specialty papers are presented 

proposals for methods for determination for the variation 

of the refractive index of the lens based on using 

aspherical diopters.  

In this paper is proposed an approach based on the 

wavefront aberration for the optical system with spherical 

diopters.  The determination of the formula for the 

variation of the refractive index of the lens, related to the 

main pupil radius and a given radius, is based on the 

optical diagram presented in figure 6.  

 
 

Fig. 6. Pathway of the main pupil radius and a given 

radius through the optical system of the eyeball 
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The definition formula 1 is written as:  
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where:  jj Dn   Basic optical pathway along the main 

pupil radius,  

jj Dn  Basic optical pathway along the radius 

investigated and which is part of the beam of optical rays,  

SRDn5
Optical pathway of the main pupil radius from 

the last diopter to the reference sphere.  

  
iSRDn5  Optical pathway of given radius i, from the 

last diopter to the reference sphere.  

k  The less than one factor imposed by the user, which 

indicates the number of times the wavefront aberration 

will be decreased depending on the radius involved.  

iW The wavefront aberration for the optical radius 

involved in the hypothesis of the constant refraction index 

for the lens throughout its body, having the value                   

n4= 1.42007.    The expression 16 can also be written as: 
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      From expression 17 can be determine the refraction 

index for the lens in the point where the involved radius 

pierces the plane tangent to the anterior surface of the lens.  

 

       

i

j j

iiSRijjSRjj

i
D

WkDnDnDnDn

n
4

4

1

3

1

55

4

 
 





   (18) 

 

        Expression 18 can be used to calculate the refraction 

index for all rays of the beam of optical rays that traverses 

the optical system of the eyeball i = 0. .  Nrays,  where Nrays 

represents the number of optical rays in the beam.  The 

relation is applied to each ray belonging to the beam when 

the optical ray traverses the lens.    

      The confirmation of the proposal to change the 

refraction index is shown in figure 8. In the table from this 

figure, in the first column are shown the values of the 

wavefront aberrations calculated with a constant refraction 

index throughout the body of Wr, in the second column 

are shown the values of the wavefront aberrations 

calculated with variable values for the refraction index 

throughout the body of Wn variable, and in the third column 

are presented the refraction indexes calculated with 

expression 18.  

      On the right side of figure 7 is the table with the entry 

data involved in the calculation using expression 18. Next 

to this table are presented the minimum and maximum 

values for variation of the refraction index of the lens, the 

number of the point where these values are located, the 

radius of the entry pupil and the radius of the reference 

sphere employed for these calculations.  

      For the point with the maximum wavefront aberration 

is observed that W81= 0.5269 wavelengths when the 

refraction index of the lens is constant and W81 = 0 

wavelengths when the refraction index of the lens varies 

using the formula 18.   

       If we consider the Rayleigh criterion for assessing the 

resolution, which says that an optical system is considered 

aberration free if the aberration of the wavefront is smaller 

than 0.25 wavelengths, we can state that by applying the 

formula 18 the selected mathematical model of the 

eyeball, is an optical system free of aberrations.   

       For a complete example, next will be presented the 

wavelength aberrations for mm5.2yL  .  At this value 

on the eyeball is located the fovea, where the density of 

the photosensitive cells is maximum (from the 7 million 

cone cells most are concentrated on the surface of the 

fovea with an elliptical shape with the long axis of 2 mm 

and the short axis of 1 mm).   

       The curves are traced for the standard radiations 

gFDC nsin,n,n  for an opening number 96.9dN , 

which leads to the diameter of the iris equal with D = 2.23 

mm and the object abscissa as infinite. The value of the 

diameter of the pupil is calculated at the optimal and 

environmental lighting.  The analysis was conducted in the 

meridian plane and the sagittal plane.  

      In fig. 8 are presented the curves of the wavefront 

aberration obtained with the index of the lens variable 

throughout its body, from the values given by formula 18.  

In fig. 8 is represented graphically the wavefront 

aberration for the optical system of the eyeball when the 

refractive index of the lens is variable throughout its body.  

It can be observed a null value for the wavefront 

aberration.  

 In fig. 9 are traced the graphs for the variation of the 

refractive index of the lens to obtain an optical system of 

the eyeball without aberrations, and in figure 10 are 

presented the MTF curves for this model.  
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Fig. 7. Test for validation of formula 6 for variation of the refractive index of the lens having the refractive  

index of the lens variable throughout its body. 

 

 

 
 

Fig. 8. The wavefront aberration for the optical system of the eyeball when the refractive index of the lens  

is variable throughout its body.  

 



766                                                                               A. T. Pascu, D. Bacescu 

 

 
 

Fig. 9. Variation of the refractive index of the lens in the optical system of the eyeball 

 

 
 

Fig. 10 Modulation transfer function (MTF) for the optical system of the eyeball when the refractive 

 index of the lens is variable throughout its body.  

 

5. Conclusions 
 

The calculation of the complex aberrations for the 

optical system of the eyeball leads to high values, 

contradicting the real perception of the image as it is seen 

by the human eye.  This is explained by the fact that the 

anatomy of the lens shows that the refraction index of the 

lens is not constant throughout its body and it is known 

that it varies from the optical axis to the edge and also 

along the optical axis.  This type of modification is 

nature's solution for correcting the aberrations.       Sadly 

the variation law for the refraction index throughout the 

lens body is not known.     In order to calculate the extra-

paraxial aberrations listed above, maintaining the 

concordance with the physical reality of the eye is 

imposed the determination of the variation law for the 

refraction index throughout the lens body (formula 18).  

The analysis of the aberrations of the optical system 

provides the information regarding the radius of the 

eyeball.  With this radius can be considered that the 

mathematical model of the emmetropic eye is obtained.  

On this model can be changed the radius of the 

eyeball obtaining an ametropic eye, which can be 

corrected with an eyeglass lens or a contact lens.   
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